A Distributed Algorithm for Delay-Constrained Unicast Routing*f

Hussein F. Salama
ECE Department
N.C. State University

Douglas S. Reeves
CSC and ECE Departments
N.C State University

Yannis Viniotis
ECE Deparmtent
N.C. State University

Box 7911, Raleigh, NC 27695 Box 8206, Raleigh, NC 27695 Box 7911, Raleigh, NC 27695

hf sal ama@os. ncsu. edu

Abstract
In this paper, we study the NP-hard delay-constrained
least-cost path problem, and propose a simple, distributed
heuristic solution: the delay-constrained unicast routing
(DCUR) algorithm. DCUR requires limited network state
information to be kept at each node: a cost vector and a
delay vector. We prove DCUR's correctness by showing
that it is always capable of constructing a loop-free delay-
constrained path within finite time, if such a path exists.
The worst case message complexity of DCUR is O(|V[3)
messages, where |V| is the number of nodes. However,
simulation resultsshowthat, on theaverage, DCURrequires
much fewer messages. Therefore, DCURscaleswell tolarge
networks. We also use simulation to compare DCUR to the
optimal algorithm, and to the least-delay path algorithm.
Our results show that DCUR's path costs are within 10%

from those of the optimal solution.

1 Introduction

New distributed applications are emerging at a fast rate.
These applications typically involve real-time traffic that
requiresquality of service (QoS) guarantees. Traffic streams
carrying voice, video, or critical real-time control signals
have particularly stringent end-to-end delay requirements.
In addition, real-time traffic usualy utilizes a significant
amount of resources while traversing the network. Hence
the need for routing mechanisms which are able to satisfy
the delay requirements of real-time traffic and to manage
the network resources efficiently.

Uni cast routing protocol scan be classified into two cate-
gories. distance-vector protocols, e.g., the routing informa-
tion protocol (RIP) [1], and link-state protocols, e.g., the
open shortest path first protocol (OSPF) [2]. Distance-

*Thiswork was supported in part by the Center for Advanced Comput-
ing and Communicationat North Carolina State University, and by AFOSR
grant F49620-96-1-0061. The views and conclusions contained herein are
those of the authorsand should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of
the AFOSR or the U.S. Government.

t Copyright 19971 EEE. Publishedin the Proceedingsof INFOCOM' 97,
April 7-11, 1997 in Kobe, Japan. Personal use of thismaterial is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the |EEE. Contact:
Manager, Copyrights and Permissions / |EEE Service Center / 445 Hoes
Lane/ PO. Box 1331/ Piscataway, NJ 08855-1331, USA. Telephone: +
Intl. 908-562-3966.

reeves@os. ncsu. edu

candi ce@os. ncsu. edu

vector protocols are based on a distributed version of
Bellman-Ford's shortest path (SP) agorithm[3]. Consider-
ing the message complexity, distance-vector routing proto-
cols scale well to large networks, because each node sends
periodical topol ogy update messagesonly toitsdirect neigh-
bors. Each node maintains only limited information about
the shortest paths to al other nodes in the network. Dueto
their distributed nature, distance-vector protocols may suf-
fer fromlooping problemswhen the network isnot in steady
gtate. In link-state protocols, on the other hand, each node
mai ntai nscompl eteinformation about the network topol ogy,
and uses thisinformation to compute the shortest path to a
given destination centrally using Dijkstra’s algorithm [3].
Link-state protocol shave limited scal ability, because flood-
ing isused to updatethe nodes' topology information. They
do not suffer from looping problems, however, because of
their centralized nature. In 1995, Garcia-Luna-Aceves and
Behrens [4] proposed a distributed protocol, based on link
vectors, that avoids looping problems and scales well to
large networks.

Both Bellman-Ford's and Dijkstra’'s SP algorithms are
exact and run in polynomia time. As the name indicates,
an SP a gorithm minimizes the the sum of the lengths of the
individua links on the path from source to destination. |If
the length of alink is a measure of the delay on that link,
then an SP agorithm computes the least-delay (LD) path,
andif thelink lengthis set equal to thelink cost, then an SP
algorithm computes the least-cost (LC) path.

We study the problem of unicast routing of rea -timetraf-
fic subject to an end-to-end delay constraint in connection-
oriented networks. We formulate the problem as a Delay-
Constrained LC (DCLC) path problem. This problem is
NP-hard [5]. Therefore, we propose a distributed heuris-
tic solution: the delay-constrained unicast routing (DCUR)
algorithm. Widyono [6] proposed an optima centralized
delay-constrained algorithm to solve the DCLC problem.
His agorithm, called the constrained Bellman-Ford (CBF)
algorithm, performs a breadth-first search to find the opti-
mal DCLC path. Unfortunately, duetoitsoptimality, CBF's
worst case running times grow exponentialy with the size
of the network. Jaffe [7] studied a variation of the prob-
lem in which the path cost and the path delay are defined
as two congtraints, and he proposed a pseudo-polynomial-
time heuristic and a polynomial-time heuristic for solving
the problem. The path cost (and similarly the path delay) is
an additive metric, i.e, it isequal to the sum of the costs of
the links on the path. Wang and Crowcroft [8] investigated
the routing problem subject to multiple quality of service

constraints in datagram networks. They considered mul-
tiplicative and concave constraints in addition to additive
constraints.

The remainder of this paper is organized as follows. In
section 2, we formulate the DCLC problem. In section 3,
we describe the routing information needed at each node
for successful execution of DCUR. Then, in section 4, we
present DCUR, proveitscorrectness, and study itscomplex-
ity. In section 5, we evaluate DCUR’s performance using
simulation. Section 6 concludes the paper.

2 Problem Formulation

A point-to-point communication network is represented
as a directed, simple, connected network N = (V, F),
where V isaset of nodes and £ is a set of directed links.
Any directed link e = (u,v) € F hasacost C(e) and a
delay D(e) associated withit. C'(e) and D(e) may take any
nonnegative real values. Thelink delay D(e) isameasure
of thedelay a packet experiences when traversingthelink e.
The link cost C'(e) may be either a monetary cost or some
measure of the link’sutilization.

We define a path as an alternating sequence of nodesand
links P(vo,vk) = vo,e1,v1,€2,v2, ", Vk—1, €k, Vg, SUCh
that e; = (v;—1,v;) € F,for1 < i < k. A path con-
tainsloopsif not all itsnodes are distinct. 1n the remainder
of this paper, it will be explicitly mentioned if a path con-
tainsloops. Otherwise a“path” aways denotes aloop-free
path. We will use the following notation to represent a
path: P(Uo,vk) = {Uo — V] — - — Vp_1 — Uk}. For
a given source node s € 1 and destination node d € V,
P(s,d) = {P1,---,Ppn} isthe set of al possible paths
from s to d. The cost of apath P; isdefined as:

Cost(P;) = > C(e). (1)

eeP;

Similarly, the end-to-end delay aong the path P; is defined
as:
Delay(P;) = Z D(e). (2

eeP;

The DCLC problem finds the LC path from a source node
s to adestination node d such that the delay along that path
does not exceed a delay constraint A. It is a constrained
mi ni mi zation problem that can be formulated as follows.
Delay-Constrained Least-Cost (DCLC) Path Problem:
Given a directed network N' = (V, F), a nonnegative cost
C'(e) for each e € E, a nonnegative delay D(e) for each
e € F,asourcenodes € V', adegtinationnoded € V', and
a positive delay constraint A, the constrained minimization
problemis:

[Cost(P; 3
B P ®

where P’(s, d) isthe set of paths from s to d for which the

end-to-end delay is bounded by A. Therefore P'(s,d) C
P(s,d). If P; € P(s,d) then P, € P’'(s,d) ifand only if

Delay(P;) < A. 4

The DCLC problemis NP-hard [5]. It remains NP-hard
in the case of undirected networks. However, it is solvable
inpolynomial timeif al link costsareequal or al link delays
areequal.

3 Routing Infor mation

In this section, we discuss the routing information which
needs to be present at any nodein the network to assure suc-
cessful execution of DCUR. Every node v € V' must have
the following information avail able during the computation
of thedel ay-constrained path: thecostsof al outgoinglinks,
the delays of all outgoing links, acost vector, adelay vector,
and arouting table. The cost vector and delay vector struc-
tures are presented below, and the routing table structure
will be described in the next section.

The cost vector a node v consists of |V/| entries, one
entry for each node w inthe network. Each entry in the cost
vector holdsthe following information:

e thedestination node ID, w,

e the cost of the LC path from v to w,
least_cost _value(v, w), and

o theID of the next hop node on the LC path from v to w,
least_cost_nhop(v, w).

Similarly, the delay vector at node v has one entry for each
node w in the network. However, each entry in the delay
vector holds:

e thedestination node ID, w,

¢ the total end-to-end delay of the LD path from v to w,
least_delay_value(v, w), and

¢ the ID of the next hop node on the LD path from v to w,
least_delay_nhop(v, w).

Thecost vectors and delay vectorsare similar to thedistance
vectors of some existing routing protocols [1]. Distance-
vector based protocols discuss in detail how to update the
distance vectors in response to topology changes, and how
to prevent instability. These procedures are simple and
require the contents of the distance vector at each node to
be periodically transmitted to direct neighbors of that node
only. Thesameproceduresused for maintai ning thedistance
vectors can be used for maintaining the cost vectors and
delay vectors. We will not discuss these proceduresin this
paper. We assume that the cost vectors and delay vectors
a al nodes are up-to-date. We also assume that the link
costs, the link delays, the contents of the cost vectors, and
the contents of the delay vectors do not change during the
execution of the routing algorithm.

4 The Delay-Constrained Unicast Routing

(DCUR) Algorithm

We start by presenting a simple version of DCUR. Then
we discuss how loops may be created, and how DCUR
detects them and eliminates them. After completing the
description of DCUR, we prove its correctness and derive
its compl exity.

DCUR is a source-initiated agorithm that constructs a
delay-constrained path connecting source node s to desti-
nation node d. The path is constructed one node at a time,
from the source to the destination. Any node v at the end
of the partially-constructed path can choose to add one of
only two aternative outgoing links. Onelink ison the LC
path from v to the destination, while the other link ison the
LD path from v to the destination. This limitation restricts
DCUR’s ahility to construct the optimal path, but it consid-
erably reduces the amount of computation required at any
node.

In the following, we describe asimple version of DCUR
which assumes that no routing loops can occur. The
source node s initiates path construction by looking up
the least _delay_value(s, d) from its delay vector. If this
valueis greater than the delay constraint A, then no delay-
constrained paths exist between s and d, and DCUR fails
and stops. If, however, delay-constrained paths do exist,
i.e,

least_delay_value(s,d) < A, (5)

the algorithm proceeds. The source s becomes the current
active node, denoted active_node. At al times there is
only one active node, at the end of the partially-constructed
path. Thevariabledelay_so_far issetto00, and thevariable
previous_active_node iSSet to null.

The active_node reads the ID of the next hop node on
the LC path towards d, least_cost_nhop(active_node, d),
from its cost vector. least_cost_nhop(active_node, d) is
denoted as lc_nhop for convenience. Then active_node
sendsaQuery messagetolc_nhop, requestingtheL D value
from lc_nhop to d. lc_nhop l00ks up the requested value,
least_delay_value(le_nhop, d), from its delay vector, and
sends a Response message back to active_node with this
information. After active_node receives the Response
message, it checks if

delay_so_far + D(active_node, le_nhop) +
least_delay_value(lc_nhop, d) < A. (6)

If the inequaity is satisfied, then there exist delay-
constrained paths from active_node to d which use the
link (active_node,le_nhop), and active_node selects the
direction of the LC path towards d. If theinequality is not
satisfied, then active_node selects the direction of the LD
pathtowardsd. TheLD path from active_node to d isguar-
anteed to be part of at |east one delay-constrained path from
s to d; otherwise, active_node could not have been selected
inapreviousstep (aproof isprovidedin subsection4.2). Af-
ter deciding which direction to follow, active_node creates
arouting table entry with the following information:

e thelD of s,
e thelD of d,
e previous_node = |D of the previous_active_node,
le_nhop,
if LC path direction is chosen,
e next_node =

least_delay_nhop(active_node, d),
if LD path direction is chosen,
o previous_delay = delay_so_far, and
LCPATH
if LC path direction is chosen,
LDPATH
if LD path directionis chosen.

flag =

Then active_node adds D(active_node, next_node) tothe
variable delay_so_far. Findly the active_node sends
a Construct_Path message to next_node that contains:
the ID of the source s, the ID of the destination d, the
value of the delay congtraint A, and the updated value of
delay_so_far which represents the delay a ong the already
constructed pathfrom s tonext_node. After sendingout the
Construct_Path message, active_node becomesinactive.

When a node v # d receives a Construct_Path
message, it becomes the new active_node. The new

active_node SEtS previous_active_node to be the ID of
the node which sent it a Construct_Path message. Then
the new active_node executes the same procedure just de-
scribed.

When thedestination noded receivesaC'onstruct _Path
message, it records the ID of the node which sent the mes-
sage. d creates a routing table entry, with the follow-
ing values: ID of the source s, ID of the destination d,
previous_node = previous_active_node, next_node =
null, and previous_delay = delay_so_far. Then the des-
tinati on sends an acknowledgment back to the source. When
the source receives the acknowledgment message, it signals
to the application that the path construction has been suc-
cessfully completed, and traffic can be transmitted along
that path.

An active_node, does not send a Query mes
sage if the next hop node is the same on both
the LC path and the LD path from active_node to
the destination, i.e., least_cost_nhop(active_node,d) =
least_delay_nhop(active_node, d). Itisknownin advance
that the LD direction satisfies the delay constraint, so there
isno needfor theQuery message. Inthiscase, active_node
setsthe flag in therouting tableentry to LDP AT H. The
reason for that particular setting will be explained later in
this section, when routing loops are discussed.

The paths constructed by existing distance-vector pro-
tocols are guaranteed to be loop-freeif the contents of the
distance vectors at al nodes are up-to-date and the network
isin stable condition. However, up-to-date cost vectors and
delay vectors contents and stable network condition are not
sufficient to guarantee loop-free operation for DCUR. In
DCUR, each node involved in the path construction oper-
ation selects either the LC path direction or the LD path
direction as has been explained above. If al nodes choose
the LC path direction, or al nodes choose the LD path di-
rection, then no loops can occur, because the resulting paths
are the LC path or LD path respectively. However, if some
nodes choose the LC path direction while others choose
the LD path direction, loops may occur. In the following
subsection, we discuss how DCUR detects and eliminates
loops.

4.1 Loop Removal

Figure 1 shows a scenario that results in a loop. The
sourcenode A initiatesthe construction of apath towardsthe
destination node D with an imposed delay constraint value
of 8. Subfigures 1(a), 1(b), and 1(c) show successive stages
of path construction until a loop is created. The source A
follows the LD path direction towards the destination D
and link (A, B) becomes the first link in the path. Node
B follows the LC path direction towards D and adds link
(B, C) to the path. Node C' followsthe LD path direction
and adds link (C, A}% to the path. This creates the loop
{A — B — C — A}, asshown in subfigure 1(c).

DCUR detects loopsas follows. When anode receives a
Construct_Path message, it searches itsrouting table. A
loop isdetected if aroutingtable entry already existsfor the
source-destination pair specified in the Construct_Path
message.

Theactivenode, active_node, that detectsaloopinitiates
the loop removal operation. The contents of active_node’s
routing table entry are left unchanged. active_node sends
a Remove_Loop message to the previous node on theloop,
previous_active_node (the node from which active_node

Figure 1: Example of aloop scenario. A isthe source and
D the destination. Link costs and link delays are shown
next to each link as (cost,delay). A = 8.

received the last Construct_Path message), and then
active_node becomes inactive. The IDs of the source and
destination nodes are all that needs to be included in the
Remove_Loop message. The Remove_Loop message tra-
verses the loop backwards, removing routing table entries,
until it finds a node w whose routing table entry’s flag
isset to LOPATH indicating that this node is following
the LC path direction towards the destination. There must
be at least one node on the loop that follows the LC path
direction, because, as we mentioned before, loops can not
be created if al nodes follow the LD path direction. The
Remove_Loop message is not sent any further backwards
along the loop, after it arrives at w. Node w then de-
cides to follow the LD path direction, instead of the LC
path direction, in order to avoid the conditionsthat caused
the loop. This decision can never lead to any delay con-
straint violations. Thus w adjuststhe contents of itsrouting
table entry so that next_node = least_delay_nhop(w, d)
and flag = LDPATH. The variables previous_node,
previous_delay, and delay_so_far remain unchanged.
Then w sends a Construct_Path message to next_node,
and path construction continues.

For theexample of figure 1, node A detectsthe existence
of aloop. It reacts by sending a Remove_Loop message
that traverses the loop backwards. Node C' receives the
Remove_Loop message from A, but C'isalready following
the LD path direction towards the destination, so all it does
isto send the Remove_Loop message further backwards to
B, and to delete its routing table entry, thereby removing
link (C, A) fromthepath (subfigure 1(d)). Node B receives
the Remove_Loop message. It is following the LC path
direction towards the destination, so it decides to follow the

LD path direction instead, and modifiesitsrouting tableen-
try accordingly. Thus removing link (B, C') from the path
and adding link (B, D) instead. Then B continues con-
structing the path by sending a C'onstruct_Path message
to D, which isthe destination. The final delay-constrained
path from A to D isthe one shown in subfigure 1(€).

It was mentioned above that, at a node w, the routing
table entry’s flag is set to LDP AT H when both the LC
path direction and the LD path direction share the same link
to the next hop. The reason is that if the flag was set to
LCPATH ,andthenw received a Remove_Loop message,
it would have removed the link leading to the next nodein
the LC path direction, and then it would have added the
same link to the path again, because that link leads aso to
the next node in the LD path direction. The result would
have been the same loop occurring twice.

The description of DCUR is now complete. Complete
pseudo code for the agorithm can be found in [9]. In the
remainder of thissection, weprovethe correctnessof DCUR
and study its complexity.

4.2 Correctness of DCUR

We verify the correctness of DCUR by proving that it can
always construct a loop-free delay-constrained path within
afinitetime, if such a path exists.

Theorem 1 DCUR always constructs a delay-constrained
path for a given source s and destination d, if such a path
exists.

Proof. If no feasible path exists for a given source-
destinationpair, DCUR failsimmediately at the source node
after checking that the delay along the LD path exceeds the
delay constraint, i.e., inequality 5 isnot satisfied. If the LD
path can not satisfy the delay constraint, no other path can.
If at least one delay-constrained path from s to d exists,
then inequality 5 will be satisfied, and path construction
can start. Initialy, the source s is the only member in the
path. Therest of thisproof isdoneby inductionon j, where
P; = {vo — --- — v;} denotes the subpath constructed
starting at the source, s = v, and ending at the current ac-
tivenode, active_node = v;, and j denotesthelength of the
path in hops. The basis for inductionis Py = {vg}. Since
inequality 5 issatisfied, and Delay(Py) = 0O, it followsthat

Delay(Py) + least_delay value(vg, d) < A (7)
Assume that
Delay(P;) + least_delay_value(v;, d) <A, (8)

Inequality 8 guarantees that the subpath ; ispart of &t least
one delay-constrained path from s to d. DCUR proceeds
by adding either the first link along the LC path from v;
to d or the first link aong the LD path from v; to d. If
DCUR adds the first link @ong the LC path, i.e, vj4+1 =
le_nhop = least_cost_nhop(v;, d), then inequality 6 must
be satisfied. This inequality can be rephrased as follows
after substituting Delay(P;) for delay_so_far and v; for
active_node and v; 1 for lc_nhop:

Delay(P;) + D(v;, vj41)+
least_delay_value(vjiq,d) =
Delay(Pj+1)+
least_delay_value(vjyq,d) <A (9

The other aternative for DCUR is to proceed from wv;
by adding the first link along the LD path, i.e, v;41 =
least_delay_nhop(v;,d). Inthiscase,

least_delay_value(v;,d) =
D(v;,vj41) + least_delay_value(vjyq,d), (10)

and we can restate inequality 8 as:

Delay(P;) + D(vj, vj41)+
least_delay_value(vjiq,d) =
Delay(Pj+1)+
least_delay_value(vjyq,d) <A (1)

In both cases, v;.+1 becomes the next active_node. It fol-
lows from inequalities 9 and 11 that the subpath from s to
active_node is part of at least one delay-constrained path
towardsd. DCUR stops only when active_node = d. O

Theorem 2 Thefinal path constructed by DCURfor agiven
source s and destination d does not contain any loops.

Proof. We use the same notation used in the proof of
theorem 1. Let V; = {wo, - - -, v; } bethe set of nodesin the
subpath £;. All nodesin V; have arouting table entry for
the source-destination pair, s and d. The active node, v;,
addsalink (v, vj41). Ifv; 11 € V;, aloopiscreated. Node
v;+1 becomes the next active node. Node v;,, searches
its routing table for an entry corresponding to s and d. If
vj+1 € V;, itwill find such an entry, thus detecting aloop.
We proved that when alink (v;, v;41) isadded that creates
aloop, node v; 1 will dways detect that 1oop.

Next we prove that when node v; 11 detects a loop, it
calls a process that correctly breaks that loop. When v; 41
detects a loop, it sends a Remove_Loop message back to
v;. Node v;’s reaction to the receipt of the Remove_Loop
message depends on the flag in the routing table entry
corresponding to s and d. In all cases, node v; removes
thelink (v;, v;+1) from the path being constructed. Thisis
sufficient to correctly break the detected loop. O

Theorem 3 Theexecution timeof DCURfor agiven source
s and destination d is always finite.

Proof. If no delay-constrained pathsexist, then DCUR fails
immediately at the source after determiningthat inequality 5
is not satisfied. If inequality 5 is satisfied, then DCUR
proceeds. If noloopsoccur, then, after adding at most (|V|—
1) links, DCUR reaches the destination d. It remains to
provethat evenif loopsoccur, DCUR will still reach d within
finitetime. A subpath P; = {vo — --- —v; — - — v;}
ends with aloop if v; = v; where0 < ¢ < j and vg = s.
When the size of the network, |V/|, is finite, the maximum
number of distinct subpaths starting at s and ending with a
loop isfinite. Therefore, it is sufficient to prove that DCUR
never attemptsto construct the same subpath ending with a
loop twice. When node v; = v; detects aloop at the head

of a subpath P/ 7, it calls the loop removal procedure
which traverses thepath P " backwards removing links

until a link e£¢ = (v;,vp41) is reached that is on the
LC path direction from v;, towards d, where i < &k < j.

Link e£< is removed from the path and path construction
resumes by adding thelink onthe LD path directionfrom vy,

towardsd, link e£”. One necessary conditionto reconstruct
P99 istoreadd link ¢ to the path being constructed.
This means that aloop must occur, and to remove that loop
DCUR removes link e£”. However loop remova can not
stop immediately after removing e, because it is on the
LD path direction towards d. Therefore loop removal must
continue backwardsuntil alink e ontheLC path direction
fromnodev; towardsd isreached, where0 < [< k. DCUR
removes link eZ“. Then path construction resumes and

link e£¢ may be readded to the subpath being constructed.
Therefore, after alink ¢, originally onapath PF99F is
removed from the path, it can be readded to the path only
if alink eL isremoved, where0 < [< k < j. Thesame
holds for link <. It follows that, the exact same subpath
P9OF can not be reconstructed twice during theexecution
of DCUR. O

4.3 Complexity of DCUR

The computational complexity of the proposed dis-
tributed agorithm a any node is O(1), because each
time a node receives a Construct_Path message or a
Remove_Loop message, it performsafixed amount of com-
putations, irrespective of the size of the network.

We now consider the worst case message complexity
of DCUR, i.e, the number of messages needed in the
worst case, in order to construct a path for a given source-
destination pair. If no loops occur, then the number of
messages needed to construct a path is proportional to the
number of linksin the path, because anode running DCUR
exchanges at most three messages to add one link. For a
network size of || nodes, the longest possible path from
source to destination consists of |V'| nodes and (|V| — 1)
links. Therefore the number of messages needed in the
worst case is O(|V]), if it is guaranteed that no loops will
occur. Unfortunately, the occurrence of loops complicates
theanaysis.

The tree of the LC paths from any node in the network
to the destination node d, denoted LCTREE, consists of
(V] = 1) links. Similarly, thetree of the LD paths from any
nodein the network to the destination d, denoted LDTREE,
aso consists of (|V| — 1) links. The union of these two
trees is a subnetwork N’ = (V, E’), where (|V]| — 1) <
|E'| < 2% (|V]| = 1), because some linksmay be members
of both trees. Figure 2 shows an example of the union
of an LCTREE and an LDTREE. In this example, the link
(C, D) is amember of both trees. The |E’| links are the
only links considered by DCUR when constructing a path
from a source s to the destination d, because, as has been
explained before, at any node DCUR considers only the
LC path direction and the LD path direction towards the
destination.

Let the links of the LCTREE be caled tree links. We
add the links of the LDTREE to the LCTREE to obtain the
subnetwork N’. The links of the LDTREE which are not
aready in the LCTREE will be classified into one of the
following three link types.

e A back link which is traversed from a node to one of
its ancestors®. A back link may result in aloop.

1A nodew isan ancestor of anodew in the LCTREE if w is on the path

__- LCTREE link

__ = LDTREE link

Figure 2: Example of a subnetwork constructed by taking
the union of the LCTREE and the LDTREE. The destination
isnode £.

o A descendent link goes from a node to one of its de-
scendants other than its child. A descendent link may
provide one or more nodes with two aternate paths
towardsthe destination.

e A cross link connects two nodes such that neither is
a descendant of the other. A cross link may provide
one or more nodeswith two aternate pathstowardsthe
destination.

In the example of figure 2, links (4, B), (B, C), (C, D),
(D, E),and (F, C) aretreelinks. Thelink (D, A) isaback
link. Links (A4, E') and (F, D) are descendent links, and the
link (B, F') isacrosslink.

A subnetwork N’ has X back links, Y descendent links,
and 7 cross linkswhere 0 < X,V, 7 < (|V]| - 1) and
(X+Y +Z) < (]V|-1). Adding aback link to a path
under construction may or may not result in aloop. Since
we are studying the worst case, we assume that adding a
back link to a path always resultsin aloop. Consider aback
link, e. Link e may be added and removed from the path
being constructed several times, if itisreachableviamultiple
aternate paths from the source node. A loop results each
time e isadded. The back link e is reachable via(Y + Z)
aternate paths in the worst case. This happens when the
(Y 4 Z) descendent linksand crosslinksare upstream from
the back link e. In this case, each time DCUR attempts
to use one of the (Y + Z) resulting alternate paths, it may
continue downstream and add the link e, thus creating a
loop. If DCUR attemptsto use dl (Y + 7) alternate paths
while constructing the delay-constrained path, the link e
will be added and removed (Y 4 Z) times, which means
that (Y + Z) loopswill be created and removed during path
construction. The example of figure 2 is not a worst case
scenario. However, it shows how the back link (D, 4) can
be reached via three alternate paths when node A is the
source. The first aternative is the origina path aong the
LCTREE: {A — B — (' — D}. The second aternative
was created due to the addition of thecrosslink (B,), and
itis{A — B — F — C — D}. Thefind dternaive is
{A — B — I — D}. This path was brought to existence
by the descendent link (7', D).

So far we considered only one back link. However, the
subnetwork N’ contains X back links. In the worst case,
each of the X back linksisreachablevia(Y + 7) dternate
paths. Inthiscase we may end up with X (Y +) loops.
Since(X +Y +2) < (|]V|—1), itfollowsthat, intheworst
case, DCUR may create and remove O(|V|?) loops before
completing the construction of the delay-constrained path.

from v to thedestination 4. If v isan ancestor of w then w is adescendant
of v. If thelink (v, w) isatreelink, then w isv’s child. In the LCTREE
each node, other than d, has only one child.

Thelargest possibleloop consistsof (|V'| — 1) nodes and
(]V| — 1) links (the destination can not be part of aloop in
DCUR). A maximum of three messages are needed to add
one loop link. Thusit takes O(]|V|) messages to create the
largest [oop. One message is needed for removing one loop
link, which meansthat at most O(|V'|) messages are needed
if al loop linkshave to be removed before path construction
resumes. Therefore, O(|V'|) messages are needed, to create
and remove the largest loop. It follows that DCUR needs
O(|V|®) messages to handle O(|V|?) loops in the worst
case. Fortunately, our simulation results show that DCUR’s
average performance is much better than the worst case just
studied. These resultswill be presented in the next section.

5 Simulation Results

We used simulation for our evaluation of the average
performance of DCUR. Full duplex, directed, ssimple, con-
nected networks of different sizes with homogeneous link
capacities of 155 Mbps (OC3) were used in the experiments.
The positions of the nodes were fixed in arectangle of size
4000 * 2400 Km?, roughly the area of the continental USA.
A random generator was used to create links interconnect-
ing the nodes [9]. The output of this random generator is
always a connected network in which each node' sdegreeis
at least 2. We adjusted the parameters of the random gen-
erator carefully to obtain realistic network topologies with
an average node degree of 4, which is close to the average
node degree of current internetworks.

The propagation speed through the links was taken to be
two thirds the speed of light. Under this assumption, the
sizeof therectangle enclosing our network is20* 12 msec?.
In addition, we assumed a high-speed networking environ-
ment with small packet (cell) sizes and limited buffer space
at each node. The link propagation delay was dominant un-
der these assumptions, and the queueing component of the
link delay was neglected. The link delays were thus sym-
metric, D(u,v) = D(v, u), because the link lengths were
symmetric.

We defined the cost, C'(e), of link e, as afunction of its
utilization. We set the cost of alink to be equal to the sum
of the equivaent capacities of thetraffic streams traversing
that link. Link costs were asymmetric, because C'(u, v) and
C'(v, u) wereindependent. We conducted two experiments
to evaluate DCUR'’s performance.

5.1 TheAverage Message Complexity of DCUR

Inthefirst experiment, we measured the average number
of messages required to establish a delay-constrained path.
For each run of the experiment, we generated arandom set of
linksto interconnect the fixed nodes, we selected arandom
source and arandom destination, and we generated random
backgroundtraffic to utilizeeach link. The cost of alink was
a random variable uniformly distributed between 5 Mbps
and 125 Mbps. The experiment was repeated with network
sizes ranging from 20 nodes up to 200 nodes. We also
varied the delay constraint value from 15 msec to 55 msec.
We measured the average number of messages exchanged
between the nodes which execute the distributed DCUR
algorithm. Note that any message generated by DCUR
travels adistance of one hop only. Unless otherwise stated,
DCUR was run repeatedly until confidence intervals of less
than 5% of themean val ue, using 95% confidencelevel, were
achieved for all measured val ues presented in thissubsection
and in the next subsection.

T T T T T T T T
| Delta = 20 msec <—

Delta = 35 msec -+--
Delta = 50 msec -&--

©

8 ,,,ijff‘—“"”' E

Average number of messages

! ! ! ! ! ! ! !

20 40 60 80 100 120 140 160 180 200
Number of nodes

Figure 3: Average number of messages, variable network
size, average node degree 4, three delay constraint settings:
20 msec, 35 msec, and 50 msec.

Figure 3 shows the average number of messages versus
the size of the network for three different val ues of the delay
constraint: astrict value of 20 msec, amoderate value of 35
msec, and a lenient value of 50 msec. All three curves of
figure3indicateclearly that the average number of messages
grows very slowly with the size of the network. For any of
the delay constraint values shown in the figure, doubling
the size of the network increases the average number of
DCUR’s messages by roughly one message only. Thusthe
average growth rate of the number of messages is roughly
logarithmicin the network size.

A path that satisfies a strict delay constraint consists on
the average of fewer linksthan a path that satisfies alenient
delay constraint. For a 200-node network the average num-
ber of links per path is 4.28 for a 20 msec delay constraint,
4.72 for a35 msec delay constraint, and 5.12 for a 50 msec
delay congtraint. That iswhy the number of messages ex-
changed while constructing apath issmallest when thedel ay
constraint value is smal, 20 msec. In addition, when the
delay constraint is strict, DCUR is forced to follow the LD
path direction most of the time. Therefore, the probability
of the occurrence of aloopissmall. As has been discussed
in the previous section, the occurrence of loopsincreasesin
the number of messages.

When the delay constraint is increased to 35 msec, the
number of messages islargest. The reason is that 35 msec
isa moderately strict delay constraint, and DCUR may be
able to follow the LC path direction at some nodes and
to follow the LD path direction at others. This toggling
between LC path direction and LD path direction increases
the probability of loop occurrence, and hence increases the
average number of messages exchanged.

Increasing the delay constraint further, from 35 msec
to 50 msec, leads to a reduction in the average number of
messages, because for such a lenient value DCUR is able
to follow the LC path direction most of the time without
violating the delay constraint, and therefore it no longer
toggles between the LC path direction and the LD path
direction. The consequence isthat loops occur rarely.

In order to verify our assumption, that loops occur most
frequently when the delay constraint is moderately strict,
we measured the average number of loop occurrences dur-
ing one successful run of DCUR, i.e., a run that success-

0.12 T T T
20 nodes <—
X 50 nodes -+~
100 nodes -&--
- 01 200 nodes -»-
k5|
o
g 2 L
E 0.08 . b
=4 .
8 2 S
§ oosf g
2 ' A .
o .,
o / NN
G 0.04 a N J
S A NS
2 ok
ey e
< o002 f RN ,
B

0 —— =
0.015 0.025 0.035 0.045 0.055

Delay constraint (seconds)

Figure 4: Average number of loops occurring while con-
structing a single delay-constrained path, network sizes of
20 nodes, 50 nodes, 100 nodes, and 200 nodes, average node
degree 4, variable delay constraint.

fully constructs a del ay-constrai ned path for agiven source-
destination pair. Wefound that | oops do not occur frequently
(less than 12 loops every 100 successful runs of DCUR).
Therefore, it was not possible (due to the excessive simu-
lation times) to repeat the experiment until small enough
confidence interval swere achieved for the measured values
of the average number of loop occurrences. 1,000 success-
ful runs of DCUR were simulated for each point infigure 4.
Figure 4 shows the average number of loop occurrences
per successful run of DCUR versus the delay constraint for
different network sizes. It shows that loops occur most
frequently when the delay constraint value ranges from 20
msec to 45 msec. When the delay constraint is lenient
(larger than 45 msec) loop occurrences are very infrequent,
less than oneloop every 100 successful runs of DCUR. The
average number of loop occurrences also decreases when
strict delay constraint values of less than 20 msec are used.
Figure 4 indicates that loops occur more frequently as the
size of the network increases.

5.2 Comparison to Other Algorithms

In this subsection, we show the results of the second
experiment which compares DCUR with two agorithms
that are also suitable for delay-sensitive applications. The
first algorithm is the LD path agorithm, or simply LDP.
LDP is optimal with respect to the end-to-end delay, but
it does not attempt to minimize the cost of the constructed
path. Therefore, it may result in inefficient utilization of
the link bandwidth. The other agorithmis CBF which was
briefly described in section 1. CBF constructs the optimal
DCLC path, but itsexecution time grows exponential ly with
the network size.

The structure of the second experiment is similar to that
of the first experiment. The only difference is that for
each randomly selected source-destination pair we applied
DCUR, LDP, and CBF, oneat atime, to construct the delay-
constrained path. For each algorithm, we measured the av-
erage inefficiency relative to CBF. The average inefficiency
of an agorithm is defined as:

(costy — costepr)

COStCBF

(12)

meffictency, =

1 T T T

09 LDP —+- g
DCUR -&--

08 g
07 4
06 - g

05 T

Inefficiency

04 T J
03} |
02t 1

01L" moBe E

0 : -
0.015 0.025 0.035 0.045 0.055
Delay constraint (seconds)

Figure 5: Inefficiency, 200-node networks, average node
degree 4, variable delay constraint.

Figure 5 shows the average inefficiency of LDP and
DCUR relative to CBF for 200-node networks and a vari-
able delay constraint. When thedelay constraintissmall, <
20 msec, the number of aternate delay-constrained paths,
available for the algorithms to choose from, is small, and
therefore the differences between the agorithms are also
small. For delay constraint values between 20 msec and 45
msec, DCUR isup to 10% worsethan the optimal CBF. The
reason is that, because of thetight delay constraint, DCUR
can not always follow the unconstrained LC path direction.
In some cases, it hastofollow the LD path directioninstead.
The toggling between these two directions affects DCUR’s
ability to create low-cost paths. However, DCUR remains
on the average more efficient than LDP. When the value
of the delay constraint exceeds 45 msec, its effect on the
constructed path is minimal. In that range, DCUR’sineffi-
ciency approaches zero, because it dmost exclusively el ects
to follow the LC path direction. LDP does not attempt to
minimize the path cost at all. That'swhy itsinefficiency is
up to 50% when the delay constraint valueislarge.

Figure 5 indicates that DCUR’s path costs are dways
within 10% from the path cost of the optimal CBF. Thus
DCUR'’s cost performance is quite satisfactory, especially
when considering that CBF isacentralized a gorithm that re-
quiresgloba information about the network topol ogy while
DCUR is a distributed heuristic that requires only limited
information to be maintained at each node (one cost vector
and one delay vector).

Measurements from the same experiment indicate that
the average end-to-end delays of DCUR and CBF are con-
siderably larger than the minimal delays achieved by LDP.
This is not a big advantage for LDP, though. More im-
portant is that all three algorithms are always capable of
constructing a delay-constrained path, if such a path exists.

6 Conclusons

We studied the delay-constrained routing problem in
point-to-point connection-oriented networks. Our work
was motivated by the fast evolution of delay-sensitive dis-
tributed applications. We formulated the problem as a
delay-constrained least-cost (DCLC) path problem, which
is known to be NP-complete. Therefore, we proposed a
distributed, source-initiated heuristic solution, the delay-
constrained unicast routing (DCUR) a gorithm, to avoid the

excessive complexity of the optimal solutions. DCUR re-
quires only alimited amount of information at each node.
Theinformation at each nodeis stored in a cost vector and a
delay vector. These vectors are constructed and maintai ned
in exactly the same manner as the distance vectors which
are widely deployed over current networks. The basic idea
of DCUR isto restrict the amount of computation by limit-
ing the number of linksto choose from when constructing
delay-constrained path for a given source-destination pair.
We proved the correctness of DCUR by showingthat itisal-
ways capable of constructing a loop-free delay-constrained
path withinfinitetime, if such a path exists. The worst case
message complexity of DCUR is dominated by the occur-
rence and removal of loop. It requires O(|V |3) messagesin
theworst case. Fortunately, however, our simulation results
show that DCUR requires much fewer messages on the av-
erage, because loop occurrence israre in redistic networks.
We compared the performance of DCUR to CBF, which
is an optimal DCLC path algorithm. We also compared
DCUR to LDP, ashortest path e gorithm that minimizesthe
end-to-end delay. Our evaluation of the cost performance
of the algorithms showed that DCUR is alwayswithin 10%
from the optimal CBF, while LDP isup to 50% worse than
optimal in some cases.

In summary, DCUR is a smple, efficient, distributed
algorithm that scales well to large network sizes. This en-
courages usto useit as astarting point for implementing an
routing protocol that is capable of providing QoS guaran-
tees for real-time applications. Among others, future work
should focus on specifying mechanisms that enable DCUR
to cope with transient situations when the contents of the
cost vectors and the delay vectors at different nodes are not
consistent. In addition, future work should extend DCUR
to address the multicast routing problem.

References

[1] C. Hedrick, “Routing Information Protocol.” In-
ternet RFC 1058, http://ds.internic.net/
rfc/rfcl058.txt,June1988.

[2] J Moy, “OSPF Version 2
Internet RFC 1583, htt p: //ds. i nternic. net/
rfc/rfcl583.txt, March1994.

[3] D.Bertsekasand R. Gallager, Data Networks. Prentice-
Hall, 2nd ed., 1992.

[4] J. GarciarLuna-Aceves and J. Behrens, “Distributed,
Scalable Routing Based on Vectors of Link States,”
IEEE Journal on Selected Areas in Communications,
vol. 13, no. 8, pp. 1383-1395, October 1995.

[5] M. Garey and D. Johnson, Computers and Intractabil -
ity: A Guide to the Theory of NP-Completeness. New
York: W.H. Freeman and Co., 1979.

[6] R. Widyono, “The Design and Evaluation of Routing
Algorithmsfor Real-Time Channels” Tech. Rep. ICS|
TR-94-024, University of Californiaat Berkeley, Inter-
national Computer Science Institute, June 1994.

[7] J. Jaffe, “Algorithms for Finding Paths with Multiple
Congtraints” Networks, vol. 14, no. 1, pp. 95-116,
Spring 1984.

[8] Z.Wang and J. Crowcroft, “ Quality-of-Service Routing
for Supporting Multimedia Applications,” |EEE Jour-
nal on Sdlected Areasin Communications, vol. 14, no. 7,
pp. 1228-1234, September 1996.

[9] H. Salama, Multicast Routing for Real-time Communi-
cation on High-Speed Networks. PhD thesis, North

Carolina State University, Department of Electrical
and Computer Engineering, 1996. Available from
ftp://osl.csc.ncsu.edu/pub/rtcomirt-
comm htm .

