
Abstract - The objective of this paper was to
explore the possibility of developing a slice based
model whose random variable is independent and
would fit classical distributions. We analyzed four
MPEG-1 VBR encoded high quality, color video
sequences. None of the sequences contained audio.
We present three types of slice based models and dis-
cuss the merits of each. We show the distributions
given by each of the models and show their fit to the
Gamma and Pareto distributions using the QQ plot.

INTRODUCTION

The Asynchronous Transfer Mode (ATM) Network
has gained much attention as an effective means to
transfer voice, video and data information over com-
puter networks. The use of a fixed size, fifty-three byte
cell to transfer data makes ATM well suited to support
isochronous type services like voice and video [1]. The
small cell size makes it possible to interleave cells from
multiple sources over a common communications link;
thereby, providing low end-to-end latency. Much work
has been done in the area of transporting compressed
video over ATM addressing such issues as bandwidth
allocation, source modeling, multiplexing, encoding
methods and quality of service (QoS).

Variable bit rate (VBR) encoding has several
advantages over constant bit rate (CBR) encoding such
as consistent and subjectively better video quality, sim-
pler encoder design and increased multiplexing gain.
One paper compared the luminance signal-to-noise ratio
(SNR) of CBR and 1-layer VBR and showed significant
reductions in SNR of up to 7 dB [2]. Another paper
showed that the statistical multiplexing of multiple VBR
sources provided a gain of a factor of two over CBR [3].
Recently a gain of slightly higher than four was found to
be possible with cell loss probabilities of 10-6 [4].

One of the main drawbacks of VBR is that its burst-
iness increases the probability of cell loss by making it
difficult to determine bandwidth requirements. Bursti-
ness is caused by the fact that the encoder is not control-
ling the quantization scale dynamically in order to

maintain a constant bit rate. In this sense, VBR is
referred to as anopen-loop encoding method.

 The user must specify bandwidth requirements
when establishing a connection in order for the ATM
network to determine if enough resources, such as buff-
ers and communications links, exist. This is a preventa-
tive congestion control method in that flow control is
done at the source in an attempt to avoid congestion [5].
The user can specify bandwidth at the peak rate, but this
would waste a significant amount of bandwidth. If band-
width is improperly specified, high cell loss could occur.
For this reason, it is important to develop effective mod-
els which developers and researchers can use to deter-
mine the effective bandwidth (bandwidth required for a
given cell loss) and the multiplexing gain for com-
pressed video sources such as MPEG.

We focused our attention on the video server out-
put cell stream and assumed that the video was located
on a local file system. The objective was to characterize
the cell generation process at the output of the Seg-
menter and determine an appropriate model. Once this is
done, then the effective bandwidth (C) for a certain
buffer size (B) can be determined.

MPEG OVERVIEW

MPEG stands for the Motion Pictures Experts
Group and is an ISO standard for the coding of video
and audio [6]. It was defined to encode video and audio
at rates of 1.5 Mbps using a SIF frame resolution of
352x240 pixels. Video is compressed spatially using the
Discrete Cosine Transform (DCT) and temporally using
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FIGURE 1. VBR video server model to analyze 
cell generation statistic
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Motion Compensation (MC). The frame (or picture)
type determines which method of compression is used.

 A video sequence is broken up into a series of
sequential Group-of-Pictures (GOPs) with each GOP
consisting of at least one anchor frame and a number of
reference frames. There are three frame types in MPEG,
Intracoded (I frame), Predictive coded (P frame) and
Bidirectionally predictive coded (B frame). I frames are
encoded using the DCT and do not use MC. Since I
frames do not reference any other frames, they are use-
ful in preventing the propagation of any distortion errors
Each GOP is required to begin with an I frame. P frames
use MC and reference previous I or P frames. I and P
frames are typically referred to as anchor frames. B
frames use MC and reference a past and/or future I or P
frame. B frames typically offer the highest compression.

Each GOP consists of a number of I, B and P
frames determined by the parameters N and M, where N
equals the number of frames in a GOP and M equals the
number of B frames between anchor frames. This
defines a frame sequence pattern like IBBPBBI where
N=6 and M=2 which repeats itself for the whole video
sequence.

PREVIOUS WORK IN VIDEO 
MODELING

Simulations require effective source models in
order to understand and identify the impact of com-
pressed video sources on computer networks. Most of
the work has focused on video conference type
sequences and consequently did not include frames
encoded using B frames. The reasoning was that B
frames required too much time to encode for real time
video conference type applications. The majority of the
models have also been frame based in that cells for a
particular frame are presented to the network at the
beginning of a frame interval and transmitted within the
interval with either random or uniform cell spacing.
This is less accurate than a slice source model, but less
demanding on simulation resources. Frame based mod-
els do not capture the effects of spatial content within a
frame on queueing performance. It would be interesting
to see if a slice based model produced significant
changes in queueing performance when compared to a
frame based model. In any case, a model must capture
both the distribution and autocorrelation functions of the
source in order to be useful.

Early work used AR processes to model single
VBR sources [4] [7] [8]. AR(2) models have been found
to be sufficiently accurate for traffic studies; however, a
DAR process based on a discrete multi-state Markov
Chain was found to be more accurate for video confer-

ence data [4]. Markov Chains have been used to model
multiple VBR sources in a multiplexed environment [9]
[10] [11]. More sophisticated models have been devel-
oped for VBR sequences with scene changes which are
not adequately modeled with single AR process. One
model used two AR processes and two complementary
processes (used to determine the occurrence of a scene
change) which are modulated by a three state Markov
Chain [12]. Another used multiple AR processes, one
for the number of block per field and a second for the
number of bits per block [13]. In all of these models
only I and P frames are included, not B frames. One
paper suggested that ignoring B and P frames could
severely under estimate cell loss rates [14]. Recent work
has focused on modeling each frame type individually,
cycling through each model based on the video frame
sequence pattern (e.g. IBBPBBP...) [15] [14].

SLICE BASED MODELING

We studied four video sequences obtained from the
Portable Video Research Group calledBike, Flowg, Ten-
nis and UnderSiege. Each video sequence was encoded
using a quantization scale (q) I/B/P triplet of (4,8,4). All
sequences contained 15 slices per frame and 150 frames
except forUnderSiege which contained 731 frames. Each
sequence had SIF resolution (352x240 pixels) with N=6
and M=2. None of the sequences contained audio and all
contained color.

Model I: We first investigate a model whose ran-
dom variable is the number of cells/slice. This random
variable is used for all frame types. We show in Figure 2
the distribution of this random variable for the Flowg
sequence. One can see from the QQ plots shown in
Figure 3 that the Pareto function provides a better fit
than Gamma (The QQ plot is commonly used to deter-
mine if a given sample data fits a known classical distri-
bution. A linear plot indicates a fit). It might be possible
to develop a slice based model using the Pareto distribu-
tion; however, the samples need to be distorted in a such
a way so as to produce a similar autocorrelation func-
tion.

 The advantage of this model is that it is simple in
the sense that only one random variable is required to
represent the number of cells/slice irrespective of frame
type. However, accuracy is compromised since this
model does not take the I/B/P frame sequence pattern
into account. The frame type sequence pattern has a big
impact on the autocorrelation function.

Figure 4 show that the autocorrelation function for
Flowg is quasi-periodic with negative decay. This was
also true for the other sequences as well. This differs



from the autocorrelation functions seen at the frame
layer (without B frames) which typically show either
exponential or hyperbolic decay [15]. This indicates that
special considerations should be taken with I/B/P
sequences in the areas of multiplexing and dynamic
bandwidth allocation [16].

Model II:  It would be difficult for a model to pro-
duce such an autocorrelation function. As a conse-
quence, we look at using a slice based model based on
frame type similar to [17] [18]. The histograms for the
number of cells/slice within I frames for all four
sequences is shown in Figure 5. In this case, we will
determine fit by inspection. We can see thatBike appears
to fit Gamma well, whereasFlowg would probably fit a
Uniform distribution better andTennis a Gaussian distri-
bution. The fourth sequence,UnderSiege, does not
appear to fit any distribution, however it is distorted due
to the large number of slices with low cell counts (3
cells). This was due to the black borders on the top and
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FIGURE 2. Distribution of cells/slice for Flowg
sequence.
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FIGURE 3. QQ plots ofFlowg sequence 
showing Gamma fit (left) and Pareto fit (right).
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FIGURE 4. Autocorrelation function of Flowg.

bottom of the frames so slices 1,2 and 14,15 had 3 cells
for all frames.

This type of model is promising in that the frame
sequence pattern is taken into account. However, one of
the drawbacks is that it does not take into account the
spatial behavior within a frame. For example, a single
random variable could be used to represent the number
of cells/slice within an I frame. Fifteen samples from
this random variable, one for each slice position within a
frame, might be more random than the original sample
data.

Model III:  Next we looked at a model which is
based on the slice position within a frame. In this case,
one could have different distributions for each slice
position within a frame. We looked at I frames only for
the video sequenceUnderSiege.

 The distribution for the number of cells per slice
position was deterministic for rows 1,2 and 14,15. As
was mentioned earlier, this was due to dark borders on
the top and bottom of each frame. This was probably
done to correct the aspect ratio. While this might not be
a common thing to do, it does point out the drastic
effects video content can have on the statistics.

The slice position distributions were not smooth
indicating that more samples are needed. However, slice
positions 4-10 appeared to be Gamma shaped while 3
appeared to more uniformly distributed and 11-13
appeared to fit Pareto due to its longer tail.

This model is the most complicated requiring a ran-
dom variable for each slice position per frame type. For
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FIGURE 5. Normalized histogram of I frame 
cells/slice forBike, Flowg, Tennis and 
UnderSiege.
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these video sequences, that would mean 45 random vari-
ables!

CONCLUSION

We discussed three types of slice based models and
discussed their merits. Future work would involve simu-
lating these different models to determine their merits
over frame based models. We would also like to deter-
mine which of the three types of models work best for
video traffic studies to determine multiplexing gain and
effective bandwidth.
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