
A Simple Re�nement of Slow-start of TCP Congestion Control

Haining Wangy Hongjie Xinz Douglas S. Reevesz Kang G. Shiny

yDepartment of EECS zDepartment of Computer Science

The University of Michigan North Carolina State University

Ann Arbor, MI 48109 Raleigh, NC 27695

fhxw,kgshing@eecs.umich.edu fhxin,reevesg@eos.ncsu.edu

Abstract

This paper presents a new variant of Slow-start, called Smooth-start , which provides a smooth

transition between the exponential growth and linear growth phases of TCP congestion win-

dow. Slow-start is known to make an abrupt transition between Slow-start and Congestion

Avoidance, and hence, often causes multiple packet losses from a window of data and retrans-

mission timeouts, which, in turn, reduce e�ective throughput and result in globe synchroniza-

tion. Smooth-start solves this problem by approaching the slow-start threshold more gradually.

Our extensive simulation results show that Smooth-start can signi�cantly reduce both packet

losses and tra�c burstiness, thus improving the performance of TCP congestion control at the

start of a TCP connection or after a retransmission timeout. Furthermore, it is very simple to

implement Smooth-start and requires TCP modi�cations at the sending side only.

Keywords: Congestion control, TCP, Slow-start, performance evaluation

1

1 Introduction

The wide use of the TCP/IP protocol suite and the explosive growth of the Internet have made TCP
congestion control crucial to the performance of the Internet. Many popular Internet application
protocols, such as HTTP, ftp, and telnet, are implemented with TCP. Since these protocols generate
a large percentage of tra�c on the Internet, the TCP congestion control algorithm should be
optimized by adapting itself to the common behavior of these protocols.

The latest Internet tra�c measurements [25] indicate that many TCP
ows are short-lived.
The characteristics of the short transfers are that a relatively small number of data packets are
delivered and a TCP connection is usually terminated before it reaches steady state. Moreover, the
popularity of the Internet has increased the complexity and size of networks, which makes it take
longer to probe appropriate control parameters of a TCP connection. Thus, the start-up period of
a TCP connection can greatly in
uence the performance of short-lived TCP connections, and the
satisfaction of users' requirements.

One of the problems in the current implementations of TCP congestion control, which degrades
the TCP performance, lies in the Slow-start algorithm. TCP Slow-start is initiated both at the start
of a TCP connection or after a retransmission timeout. The objective of Slow-start is to enable
a TCP sender to discover the available network bandwidth by gradually increasing the amount of
data injected into the network from an initial window size of one segment, which prevents the TCP
sender from congesting the network with an large burst of data. Unfortunately, the approach that
Slow-start uses to probe the network bandwidth is counter-intuitive. It dribbles data out at the
beginning, and ends with a drastic leap to reach the slow-start threshold. If we �ll a pipe or a
container with water, the approach we take is opposite to the way Slow-start does.

Due to the approach that Slow-start uses to probe the network bandwidth, Slow-start suf-
fers from the following two problems. First, since the Slow-start algorithm begins with sending
one segment, it takes many round-trip times to reach the optimal operating point, resulting in
poor utilization of the available bandwidth for short transfers which are small compared to the
bandwidth-delay product of the path. Second, since a TCP sender has no knowledge about the
capacity of the available resources on the networks and uses default parameters at the beginning
of transmission, the exponential growth of the congestion window often leads the sender to send
too many packets too quickly, thus causing a severe bu�er over
ow at the bottleneck link. The
severe bu�er over
ow results in multiple packet losses from a window of data, thereby making
the TCP senders lose their self-clocking. The subsequent retransmission timeouts cause a global
synchronization [23, 27]. The global synchronization lowers the aggregate throughput and makes
the network tra�c load oscillate, and hence, the TCP performance degrades substantially.

To resolve the �rst problem, a larger initial window and TCP Fast-Start have been proposed [2,
3, 19] to speed up the transfer rate at the very beginning of Slow-start, which greatly bene�ts short
TCP transfers. To e�ciently recover multiple packet losses within a window of data, New-Reno,
SACK and FACK [10, 17, 16] have been proposed to recover from bursty packet losses without
losing self-clocking. Furthermore, to remove the second problem of Slow-start, estimated initial
ssthresh and safe ssthresh [10, 26] have been proposed to replace the default setting of ssthresh.
However, the abrupt transition of congestion window between exponential growth and linear growth
phases that causes highly bursty tra�c and frequent bu�er over
ows, remains unaddressed.

Although the estimated initial ssthresh and safe ssthresh can make signi�cant improvements
over an arbitrary default ssthresh, several obstacles exist that make the accurate and timely esti-
mation of the congestion control parameters very challenging: (1) routes are often asymmetric, and
routing asymmetry can lead to bandwidth and latency asymmetry; (2) with a varying number of

2

connections, the remaining network capacity along the path also varies over time; (3) out-of-order
packet delivery, which occurs frequently; (4) routes can also change dynamically; (5) multi-channel
bottleneck links, which violate the assumption that there is a single end-to-end forwarding path;
and (6) ACK compression, which makes the pacing between ACKs not re
ect the bottleneck delay
experienced by the data packets. Therefore, it is very di�cult to set up and maintain an appropriate
ssthresh. The improvement of estimated ssthresh is thus limited.

In this paper, we propose a modi�cation of Slow-start, called Smooth-start, which complements
the proposals for selecting an appropriate initial ssthresh. The objective of Smooth-start is to make
a smooth transition between the exponential growth and linear growth phases of the congestion
window by changing the way that the TCP sender uses to reach the slow-start threshold. A new
threshold smsthresh is introduced, which is set to ssthresh=2t, where t is a non-negative integer.
As the window size becomes larger than smsthresh, we slightly reduce the acceleration rate of
the congestion window. We call the period where the window size is in-between smsthresh and
ssthresh the smooth-start period . During this period, the window size still increases exponentially,
but at a reduced rate. Therefore, the aggressiveness of the congestion window's growth during
the smooth-start period is reduced, thus reducing packet losses and dampening tra�c burstiness.
Smooth-start brings several bene�ts, even without the ssthresh estimator or when the estimated
ssthresh is inaccurate or out of date.

� Smooth-start delays congestion because the window size approaches ssthresh more slowly. In
the meantime, many packets can be transmitted. This delayed congestion bene�ts short-lived
connections because they often �nish transmission even before the congestion occurs.

� Smooth-start reduces the chance for bu�er over
ow at the intermediate routers. If interme-
diate routers run short of bu�ers, the slower output of packets may allow su�cient time for
the routers to clear bu�ers.

� The reduced chance for bu�er over
ow also reduces the chance for multiple packet losses
within the same window. Isolated packet losses can be e�ciently handled by Fast Recov-
ery [12, 24], avoiding retransmission timeouts.

� Smooth-start produces less bursty tra�c than Slow-start, which reduces the
uctuation of
the o�ered load on the networks.

Moreover, the implementation of Smooth-start is very simple and its overhead is very small.
Only the sending side requires modi�cations, thus facilitating incremental deployment in today's
Internet. Also, due to the inherent conservativeness of Smooth-start, no unfairness is introduced
by Smooth-start. Since Smooth-start is triggered at the beginning of a connection or after a
retransmission timeout, it bene�ts not only short-lived TCP transfers but also bulk TCP transfers
if a congestion occurs.

The drawback of Smooth-start is that it takes longer for the transmission rate to reach the
optimal equilibrium operating point. However, the number of extra round-trip times introduced by
Smooth-start is small and deployment of a larger initial window or TCP Fast-Start, which increases
the growth rate of the congestion window at the �rst round-trip time of Slow-start, compensates
the slower growth rate of the congestion window in the smooth-start period.

The remainder of this paper is organized as follows. Related work is described in Section 2. Slow-
start is brie
y introduced in Section 3. Section 4 presents a detailed description of the Smooth-start
algorithm and the possible probe strategies. Section 5 shows the simulation results with respect to
the constant-load experiment and the changed-load experiment. Finally, Section 6 concludes the
paper.

3

2 Related Work

Van Jacobson [11] proposed Slow-start and Congestion Avoidance algorithms for TCP congestion
control. The current Implementations of TCP congestion control were later augmented with Fast
Retransmit and Fast Recovery algorithms [12, 24].

A larger initial window [2] has been proposed to enhance the TCP performance, which raises the
initial window size from 1 MSS to 4Kbytes. Evaluation of the larger initial window [3] shows that
it decreases the transfer time of short-lived TCP over dialup channels and the Internet, and also
the larger initial window does not signi�cantly increase the number of retransmitted packets. To
speed up Web transfers, TCP Fast-start [19] reuses cached network parameters in the recent past
to shorten the startup of Slow-start, which greatly reduces transfer latency for short bursts. Also,
by assigning a higher drop priority to Fast-start packets and augmenting the TCP loss recovery,
TCP Fast-Start tries to avoid performance degradation when the cached information is stale.

An appropriate initial value of ssthresh, which dictates when to switch from Slow-start phase to
Congestion Avoidance phase, is important to the performance of a TCP connection. Recognizing
this importance, new approaches [10, 26] have been proposed to replace the default setting of
ssthresh with an estimated or safe value of ssthresh. In [10], the method of estimation is similar
to the packet-pair technique proposed by Keshav [13]. In [26], a new variant of SPAND (Shared
PAssive Network Discovery [22]) has been presented to extract the current network condition, and
based on the extraction to derive optimal initial TCP parameters.

A modi�ed Slow-start algorithm is introduced in TCP Vegas [6], which limits the exponential
growth of Slow-start to every other round-trip time, not every round-trip time. However, the
problem is that multiple packet losses from the same window may happen during the exponential
growth phase in the modi�ed Slow-start. The key part of TCP Vegas [6] is the modi�ed congestion
avoidance algorithm, which allows more e�cient network bandwidth utilization and higher network
throughput. Instead of constant linear growth of the window during the congestion avoidance
phase, TCP Vegas adopts three di�erent strategies depending on the round-trip delay: increment,
decrement and unchanged. Using a live emulation, Ahn et al. [1] evaluated the performance of
TCP Vegas and con�rmed the claims about TCP Vegas made in [6].

A recent study [20] shows that packet loss rate on the Internet has doubled within a year and
burst loss of packets is common. To solve the problem of multiple packet losses from the same win-
dow, Selective Acknowledgment (SACK) [17] has been proposed. Using selective acknowledgments,
when non-contiguous data is received by a receiver, duplicate ACKs bearing SACK options inform
the sender about the packets that have been correctly received. Multiple packet losses per window
are recovered in a round-trip time. Fall and Floyd [7] show the bene�ts of SACKs by simulation.

Through trace analyses, it is found that over 85% of retransmission timeouts are due to small
congestion windows that prevent Fast Retransmit and Fast Recovery from being triggered [4, 14].
Based on the packet conservation rule [11], an enhancement of Fast Recovery is made to resolve
the small congestion window problem. Also an integrated approach to congestion control and loss
recovery is proposed in [4] to address the problem of multiple concurrent connections from a single
host. Lin and Kung [14] also presented a loss-sensitive window reduction mechanism.

3 Slow-Start

In the original TCP speci�cation [21], the window used by the sender, denoted as wnd, is equal to
the receiver advertised window rwnd regardless of the load in the network. However, in the TCP
congestion control schemes initiated by Van Jacobson [11], the TCP window size wnd is set to the

4

minimum of the congestion window and the receiver advertised window. The congestion window
cwnd is adjusted dynamically in response to network congestion.

wnd = min(cwnd; rwnd)

The TCP congestion control algorithm runs in two phases: Slow-start and Congestion Avoid-
ance. When cwnd is smaller than ssthresh, the algorithm is in the Slow-start phase. Every received
acknowledgment increments cwnd by 1. During this phase, cwnd essentially increases exponentially
at every round-trip time.

After cwnd reaching ssthresh, the congestion control algorithm is in the congestion avoidance
phase. Every received acknowledgment increments cwnd by 1=cwnd. During this phase, cwnd
essentially increases linearly at every round-trip time.

The window growth rates of a TCP connection in the Slow-start and Congestion Avoidance
phases are described as follows, whereW represents the congestion window size and RTT represents
the Round-Trip Time.

� Slow-start phase: dW

dt
= W

RTT
(exponentially increase)

� Congestion Avoidance phase: dW

dt
= 1

RTT
(linearly increase)

If the TCP receiver acknowledges each received data packet and no congestion occurs during
the Slow-start phase, the amount of time required for cwnd to reach ssthresh is as follows:

Slow� start T ime = RTT log2 ssthresh

The fundamental problem in the Slow-start algorithm is that when the congestion window size
closely approaches to the equilibrium of the connection, the increment of the congestion window
size is too large, leading to packet loss. At the beginning of the transmission, since the network
is empty, the exponential increase of congestion window size is reasonable and also necessary to
�ll the empty pipeline quickly. However, as cwnd gets close to the equilibrium of the connection
(unfortunately the sender does not know this until packet loss occurs), the scheme of one ACK
causing one increment of congestion window size becomes too aggressive. It makes the congestion
window size much larger than the actual bandwidth-delay product at the next round-trip time,
often causing multiple losses of packets from a window of data. Figure 1 illustrates the dynamics
of the congestion window size if no congestion occurs. Figure 2 illustrates this fact in another
viewpoint.

In Slow-start algorithm, when the congestion window size is equal to half of ssthresh, it will
reach the value of ssthresh at the next round-trip time. So, intuitively it is reasonable to slow down
the rate of increase of the congestion window size at this point, letting the sender spend a little
more time to reach ssthresh while approaching the actual equilibrium of the connection.

4 Smooth-Start

The proposed variant of Slow-start does not make a more accurate estimation or dynamically
adjust the estimation along with the changes. Rather,the variant proposes a more graceful rampup
of congestion window size in the Slow-start phase, so that packet loss is signi�cantly reduced.

4.1 Smooth-start: A New Variant of Slow-start

As Figure 2 shown, the problem with Slow-start is that cwnd takes i RTTs to reach ssthresh

2n�i
from 1,

but only 1 RTT to reach ssthresh

2n�(i+1) from ssthresh

2n�i . This acceleration at the end can cause congestion,
and packet loss. Here, we assume that cwnd needs n RTTs to reach ssthresh from 1.

5

Time

ssthresh/2

Window Size

0

ssthresh

Figure 1: Illustration of the Slow-start Algorithm: The congestion window size grows exponentially
in the Slow-start phase (up to ssthresh), and then grows linearly in the Congestion Avoidance phase.

1 ssthresh/4 ssthresh/2 ssthresh ssthresh/8

Nth RTT(N-3)th RTT

Cost Only 1 RTT!

Cost Only 1 RTT!

(N-2)th RTT (N-1)th RTT

Cost (N-2) RTTs

Cost (N-1) RTTs

Figure 2: Illustration of the Slow-start Algorithm in Another Viewpoint

The key idea of Smooth-start is to add necessary lag points between ssthresh

2n�i
and ssthresh

2n�(i+1)
to

dampen the e�ect of exponentially increase. In Smooth-start, there are two sub-phases divided by
a chosen separator smsthresh (in Figure 3, ssthresh/2 is chosen as a separator). In the �rst sub-
phase, smooth start behaves the same way as slow start. Thus we call this period the Slow-start
period or pouring sub-phase. In the second sub-phase, called the Smooth-start period or probing
sub-phase, cwnd is incremented only upon the receipt of multiple ACKs (i.e., two or more). So, at
every round-trip time cwnd increases by a factor of 1.5 or less. The number of round-trip times
needed for cwnd to reach from ssthresh

2n�i
to ssthresh

2n�(i+1)
in the probing sub phase depends on our choice

of the increasing gradient of the congestion window size. Two types of increasing gradient are
introduced: coarse-grained and �ne-grained.

4.1.1 Coarse-grained Probe

In the case of the coarse-grained probe, one lag point is inserted between ssthresh

2n�i
and ssthresh

2n�(i+1)
, where

a lag point represents an additional round-trip interval. In the �rst round-trip time after congestion
window size reaching ssthresh

2n�i
, two ACKs trigger one increment of cwnd. In the second round-trip

time, three ACKs trigger one increment of cwnd. Then two RTTs are needed to increase cwnd from
ssthresh

2n�i
to ssthresh

2n�(i+1)
. The detailed calculation is shown below.

At the end of the �rst RTT in the Smooth-start sub-phase,

CWND =
ssthresh

2n�i
+

1

2
�
ssthresh

2n�i
=

3 � ssthresh

2n�i+1

6

Time

ssthresh/2

Window Size

0

ssthresh

Figure 3: Illustration of the Smooth-start Algorithm: The congestion window size grows exponen-
tially in the Slow-start sub-phase (up to ssthresh/2), at a slower exponential growth rate in the
probing sub-phase, and then linearly in the congestion avoidance phase.

At the end of the second RTT,

CWND =
3 � ssthresh

2n�i+1
+

1

3
�

3 � ssthresh

2n�i+1
=
ssthresh

2n�(i+1)

Therefore, two RTTs are required to increase cwnd from ssthresh

2n�i to ssthresh

2n�(i+1) .

4.1.2 Fine-grained Probe

In the case of the �ne-grained probe, two lag points are inserted between ssthresh

2n�i
and ssthresh

2n�(i+1)
. In

the �rst RTT after cwnd reaching ssthresh

2n�i , three ACKs trigger one increment of cwnd. In the second
RTT, four ACKs trigger one increment of the congestion window size, and in the third RTT, �ve
ACKs trigger one increment of the congestion window size. The detailed calculation is as follows:
At the end of the �rst RTT,

CWND =
ssthresh

2n�i
+

1

3
�
ssthresh

2n�i
=

4 � ssthresh

3� 2n�i

At the end of the second RTT,

CWND =
4 � ssthresh

3� 2n�i
+

1

4
�
4 � ssthresh

3� 2n�i
=

5 � ssthresh

3� 2n�i

At the end of the third RTT,

CWND =
5 � ssthresh

3� 2n�i
+

1

5
�

5 � ssthresh

3� 2n�i
=
ssthresh

2n�(i+1)

Therefore, totally three RTTs are required to increase the congestion window size from ssthresh

2n�i
to

ssthresh

2n�(i+1)
.

In general, if we start with k ACKs triggering one increment of the congestion window size at
the �rst RTT, and (k + i) ACKs triggering one increment of cwnd at the following i-th RTT, we
need k RTTs to increase cwnd from ssthresh

2n�i
to ssthresh

2n�(i+1)
. We call the number k as grain number. The

number of lag points inserted between ssthresh

2n�i and ssthresh

2n�(i+1) is k� 1. As an analogy, we consider the
probing as controlling the \accelerator pedal", and determining how quickly you \ease o�" as you
approach the desired \target velocity". In the case of coarse-grained or �ne-grained probe that is
studied in the rest of the paper, the probe number is set to 2 or 3 respectively.

7

4.2 Possible Separator

The general form of the separator is ssthresh=2d , which separates the slow-start period from smooth-

start period. The number d is called depth number. The two candidates in our consideration are:
ssthresh=2 and ssthresh=4, in which the depth number d is set to 1 and 2. We do not consider
d � 3 because in these cases the separator is too small. In the current implementations of TCP
Slow-start, the default value of ssthresh is set to 64Kbytes. If we choose d = 3, smsthresh becomes
8Kbytes. Considering the proposed 4Kbytes initial window size, the slow-start period will only last
for 1 RTT. In many cases except for heavy congestion, this would degrade the performance of a
TCP connection since it would take too long to get to the optimal operating point.

(2). Number of lag point = 2 (Fine Grain)

(1). Number of lag point = 1 (Coarse Grain)

Separator: ssthresh/2

(N-4)th RTT (N-3)th RTT (
(N-1)th RTT

Lag Point

 ssthresh/8 1 ssthresh/4 ssthresh/2 3ssthresh/4 ssthresh

Separator

Pouring subphase Probing subphase

(N-5)th RTT (N-4)th RTT (N-3)th RTT

1 ssthresh/8 ssthresh/4 ssthresh/2 3ssthresh/4 ssthresh

(N-2)th RTT
Lag Point

(N-1)th RTT
Lag Point

Nth RTT

Separator

Pouring subphase Probing subphase

Nth RTTN-2)th RTT

Figure 4: Separator is ssthresh/2

(2). Number of lag point = 4 (Fine Grain)

Separator: ssthresh/4

(1). Number of lag point = 2 (Coarse Grain)

(N-1)th RTT(N-2)th RTT
Lag Point Lag Point

1 ssthresh/8 ssthresh/4 ssthresh/2 3ssthresh/4 ssthresh

(N-5)th RTT (N-4)th RTT

(N-3)th RTT
Lag Point

N-2)th RTT(Nth RTT

(N-1)th RTT
Lag Point

Separator
Pouring subphase Probing subphase

(N-8)th RTT (N-6)th RTT (N-3)th RTT

Lag Point Lag Point

Nth RTT

1 ssthresh/8 ssthresh/4 ssthresh/2 3ssthresh/4 ssthresh

Separator
Probing subphasePouring subphase

Figure 5: Separator is ssthresh/4

The rule for inserting lag points is illustrated in Figures 4 and 5 in the cases of the separator
being ssthresh/2 and ssthresh/4, respectively. Each �gure also contains two graphs representing
the rules for the coarse-grained and �ne-grained probing strategies respectively.

8

4.3 Overhead of the Smooth-start

The grain number k and the depth number d are two important parameters introduced by the
Smooth-start algorithm. Both of them are non-negative integers. The conservativeness of Smooth-
start is determined by theses two. The grain number k controls the probe gradient, and the depth
number d controls the probe depth. As the increment of k or d, the conservativeness of Smooth-start
increases.

The overhead of the Smooth-start depends on the probe strategy being taken, which is de-
termined by the grain number k and the depth number d. In general, if the separator is set to
ssthresh

2t and the grain number is taken as k, then the total number of extra RTTs introduced by
Smooth-start ExtraRTTs is:

ExtraRTTs = d� (k � 1)

Note if k is set to 1 and d is set to 0, then Smooth-start is converted to Slow-start. To some
extent, Slow-start can be viewed as a special case of Smooth-start. In this paper, the grain number
k is limited to [2; 3] and the depth number d is limited to the range of [1; 2].

Since only two choices of separator number and two kinds of probe number are considered in
this paper, the total number of the studied probe strategies is 4. The number in Table 1 indicates
how many lag points are inserted for each case. The number of lag points corresponds to the
number of extra RTTs introduced by Smooth-start for cwnd to reach the ssthresh.

Separator Coarse-grained Probe Fine-grained Probe

ssthresh/2 1 2

ssthresh/4 2 4

Table 1: Number of Lag Points Inserted By the Probing Strategies

5 Simulations for Smooth-start

5.1 Simulation Setup

We tested the Smooth-start algorithm by implementing it in the LBNL network simulator ns [18].
The simulation network topology is shown in Figure 6, where Si represents a sending host and
Ki represents a receiving host. R1 and R2 represent two �nite-bu�er gateways. The links are
labeled with their bandwidth and one-way propagation delay. Di�erent tra�c connections (from
Si to Ki) share a common bottleneck of 1.5 Mbps. In our simulation experiments each data packet
size is 1024 bytes. To simplify the presentation of the paper, we assume that all window sizes are
measured in units of �xed size packets, instead of bytes.

At the constant-load experiment, drop-tail gateways with FIFO service are used. However, at
the changed-load experiment, RED gateways [9, 15] replace drop-tail gateways. The bu�er size at
each gateway Ri is set to 25 packets in each experiment. The type of data tra�c in our simulation
is FTP. The receiver sends an ACK for every data packet received.

Although we have modi�ed di�erent versions of TCP like Tahoe, Reno, New-Reno and SACK
to have the Smooth-start, only the simulation results of TCP Reno are shown in this paper. The
reason is that the key di�erence among various TCP versions lies in their individual packet loss
recovery mechanism. All TCP versions employ Slow-start at the start of a TCP connection or
after a retransmission timeout, thereby they have similar behaviors during the Slow-start phase.
Another reason is that TCP Reno is built on UNIX BSD4.3, which is the most widely used TCP
version.

9

10Mbps

S1

S2

Sn

K2

K1

1.5Mbps
45ms

10Mbps

Kn

 2ms 3ms

R1 R2

Figure 6: Simulation Topology Used for Smooth-Start Experiments

In the later sections that show the simulation results, Coarse stands for the coarse-grained
probe strategy, and Fine stands for the �ne-grained probe strategy. The number 2 or 4 indicates
the chosen separator is ssthresh/2 or ssthresh/4 respectively.

5.2 Constant-Load Experiment with Drop-tail Gateways

In the constant-load experiment, the cross-tra�c is constant and the TCP connection we measured
has the �xed share of 1.0Mbps and 8 bu�er unit. Therefore, the bandwidth-delay product of each
TCP connection is:

BWP = 1:0Mbps� 2(45ms+ 5ms) = 100000 bits = 125000 bytes

Since each data packet size is set to 1024 bytes, the actual bandwidth-delay product is approx-
imately 12 packets. The total number of packets that can be in
ight is 20, plus the bu�er that is
used by the TCP connection1. The �le size transferred by this TCP connection is 60 Kbytes.

We vary the receiver advertised window size to be 18, 20, 24, 36 and 64. Because TCP sets
ssthresh to be the minimum of the default value and the receiver advertised window size, varying
the receiver advertised window size e�ectively varies the ratio of ssthresh over the actual pipe size.
This categorizes the simulation into �ve di�erent cases: (1) ssthresh is smaller than the actual pipe
size; (2) ssthresh is equal to the actual pipe size; (3) ssthresh is larger than the actual pipe size;
(4) ssthresh is much larger than the actual pipe size; (5) ssthresh is the default setting, which is
more than three times larger than the actual pipe size. The case where TCP window size is much
smaller than the actual pipe, so that no congestion occurs, is discussed in later section 5.5.

5.2.1 Simulation Results

Besides the number of packet losses, we also employ the e�ective throughput to demonstrate the
superiority of Smooth-start to Slow-start. E�ective throughput is a commonly-used metric of end-
to-end protocol performance, which measures the actual amount of \good" data transmitted over
the network, divided by the total elapsed time for the transfer of the data. The \good" data does
not include retransmissions, lost segments, or duplicate data.

1It indicates the pipe size of the TCP connection is 20.

10

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70

P
ac

ke
t L

os
se

s
(P

ac
ke

ts
)

Receiver Advertised Window Size (Packets)

Slow-start
Coarse-2

Fine-2

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70

P
ac

ke
t L

os
se

s
(P

ac
ke

ts
)

Receiver Advertised Window Size (Packets)

Slow-start
Coarse-4

Fine-4

(a) (b)

Figure 7: Packet Losses (a) Separator = ssthresh/2; (b) Separator = ssthresh/4;

Figure 7 presents the packet losses of a TCP connection using Slow-start and Smooth-start.
Figure 7 (a) shows the reduced packet losses when the separator is ssthresh/2, while (b) shows the
reduced packet losses when the separator is ssthresh/4.

Clearly, Smooth-start signi�cantly reduces packet losses in all cases when the separator is
ssthresh/4 and in most cases when the separator is ssthresh/2. It is not surprising to see that
if the separator of Smooth-start is chosen as ssthresh/2 and the ssthresh is set to default value2, the
number of packet losses in Smooth-start is the same as that in Slow-start, because the separator
ssthresh/2 is larger than the actual pipe size. Thus, before cwnd reaches ssthresh/2 to begin the
smooth-start period, multiple packets have already been dropped due to the bu�er over
ow in the
slow-start period. This is the main reason why we advance the probing phase by choosing the
separator as ssthresh/4. It also shows why an inaccurate initial ssthresh estimator is still more
helpful than the default setting.

To clearly illustrate the dynamics of a TCP connection, in the following �gures, the simulation
results are presented using the standard technique of TCP sequence number plots. The graphs
from the simulations were generated by tracing packets entering and departing router R1. For each
�gure, the x-axis represents the packet arrival or departure time in seconds. The y-axis represents
the packet number. Packets are numbered starting with packet 0. Each packet arrival and departure
is indicated by a square on the �gure. Desirable TCP behavior is re
ected by steep upward-slope
lines with a constant slope, illustrating steady throughput at the full bottleneck capacity. Figure 8
shows the dynamics of the TCP connection when the rwnd is 18, 20 and 24, respectively. Figure 9
shows the TCP dynamics when the rwnd is 36 and 64.

These �gures show that Smooth-start has fewer packet drops, fewer timeouts, and consistently
higher throughput than Slow-start. Because TCP Reno has poor capability of recovering multiple
packet losses, the transfer latency is also greatly reduced. However, reduction of the transfer latency
depends on the loss recovery mechanism of di�erent TCP versions. For TCP New-Reno, SACK
and FACK, the reduction of transfer latency is not as signi�cant as that of TCP Reno.

2It is three times larger than the actual pipe size.

11

0.0 0.5 1.0 1.5
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets
Drops

0.0 0.5 1.0 1.5
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets

(a) (b)

0.0 0.5 1.0 1.5
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets
Drops

0.0 0.5 1.0 1.5
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets

(c) (d)

0.0 1.0 2.0 3.0
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets
Drops

0.0 1.0 2.0 3.0
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets

(e) (f)

Figure 8: Simulation Results for TCP Reno with di�erent rwnd and probe strategies: (a) Slow-
start, rwnd = 18; (b) Coarse-2, rwnd = 18; (c) Slow-start, rwnd = 20; (d) Fine-2, rwnd = 20; (e)
Slow-start, rwnd = 24; (f) Coarse-4, rwnd = 24.

12

0.0 1.0 2.0 3.0 4.0
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets
Drops

0.0 1.0 2.0 3.0 4.0
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets

(a) (b)

0.0 1.0 2.0 3.0 4.0
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets
Drops

0.0 1.0 2.0 3.0 4.0
Time (s)

0.0

20.0

40.0

60.0

Pa
ck

et
 N

um
be

r

Packets
Drops

(c) (d)

Figure 9: Simulation Results for TCP Reno with Fine-grained and separator is ssthresh/4: (a)
Slow-start, rwnd = 36; (b) Fine-4, rwnd = 36; (c) Slow-start, rwnd = 64; (d) Fine-4, rwnd = 64.

13

0.0 2.0 4.0 6.0
Time (s)

0.0

5.0

10.0

15.0

20.0

25.0

30.0
Ac

tu
al

 Q
ue

ue
 S

iz
e

Slow−start
Fine−4

0.0 2.0 4.0 6.0 8.0 10.0
Time (s)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Ac
tu

al
 Q

ue
ue

 S
iz

e

Slow−start
Fine−4

(a) (b)

Figure 10: Dynamics of Actual Queue at the RED Gateway: (a) Without ECN; (b) With ECN.

5.2.2 Appropriate Probe Strategies and Inherent Advantages of Smooth-start

Based on the simulation results, Fine-4 is the probe strategy that achieves much less packet losses
and very good e�ective throughput improvements with various TCP receiver advertised window
sizes.

Note when the initial ssthresh is closely set to the actual pipe size3, Smooth-start makes sig-
ni�cant TCP performance improvements over Slow-start. Even an accurate and timely ssthresh
estimation cannot remove the whole performance degradation caused by Slow-start. The TCP per-
formance degradation due to the inappropriate approach that Slow-start uses in reaching ssthresh
can only be recti�ed by employing Smooth-start. An accurate estimation of initial ssthresh can
signi�cantly improve TCP performance, but is not a panacea to remedy all TCP start-up problems.

5.3 Changing-Load Experiment with RED Gateways

The setting of the changing-load experiment is similar to previous one, except for the fact that
RED gateways replace Drop-tail gateways and the tra�c load is periodically changed. Twelve
TCP connections share the common bottleneck of 1.5 Mbps. The �rst connection starts at time
0.5. After that, every 0.5 seconds, we start a new TCP connection. The probe strategy of Smooth-
start is Fine-4 and the receiver advertised window size is 64 packets.

The simulation results are shown in two parts. The �rst part is about the queueing behaviors
at the RED gateway, which indicates the degree of burstiness of the incoming TCP tra�c. The
second part of the simulation results show the tra�c dynamics of one TCP connection which starts
at 2.0s and sends 1 Mbytes of data.

The dynamics of the actual queue at the RED gateway are plotted in Figure 10. Clearly,
Smooth-start greatly reduces the
uctuation of actual queue size and the frequency of the bu�er
over
ow. By replacing Slow-start with Smooth-start, the burstiness of the incoming tra�c is
reduced, and hence, the pressure upon the bu�er of the gateway is reduced.

Figure 11 shows the the tra�c dynamics of the TCP connection, which starts at 2.0s. As
expected, Smooth-start has consistently higher throughput, less packet losses, and less transfer

3In the case of 18, 20 and 24.

14

2.0 3.0 4.0 5.0 6.0 7.0
Time (s)

0.0

20.0

40.0

60.0

80.0

100.0

A
ct

ua
l Q

ue
ue

 S
iz

e

Slow−start
Fine−4
Drops

2.0 4.0 6.0 8.0 10.0
Time (s)

0.0

20.0

40.0

60.0

80.0

100.0

P
ac

ke
t N

um
be

r

Slow−start
Fine−4
Drops

(a) (b)

Figure 11: Illustration of the dynamics of a TCP connection (a) Without ECN; (b) With ECN.

latencies than Slow-start.

5.4 Integrating with ssthresh Estimator

As Smooth-start does not require an ssthresh estimator [10], the integration of Smooth-start and
ssthresh estimator yields a better performance. The key point here is that the estimated ssthresh

is no worse than, and is frequently better than, an arbitrary default. The simulation results are
plotted in Figures 12 and 13. Note that the y-axis shows the packet number modulo 60.

In the same scenario where six packets are dropped, by employing Smooth-start, the number
of packet losses is reduced to 2. By integrating Smooth-start with an ssthresh estimator, only one
packet is dropped.

5.5 Fairness and Side-E�ect of Smooth-start

The Smooth-start algorithm is employed at the sender side. It is less aggressive than Slow-start,
getting to the equilibrium of a TCP connection in a more conservative way. The goal of Smooth-
start is to achieve less packet losses and improve e�ective throughput of a TCP connection. Ensuring
fairness among competing connections is beyond the capability of the Smooth-start algorithm.
However, since Smooth-start is less aggressive than Slow-start, no more unfairness will be caused
by Smooth-start. On the contrary, the
ow becomes less bursty and the less bursty
ow is more
easily controlled during the start-up period.

If no congestion occurs, the performance of Smooth-start is worse than that of Slow-start.
However, since the transmission rate still increases exponentially during the smooth-start period,
the degradation of TCP performance is not signi�cant. Moreover, the proposed larger initial window
size and TCP Fast-Start at the �rst round-trip time of slow-start period compensates the slower
growth rate of the congestion window in the smooth-start period. According to the evaluation
report from [3], the total savings provided by the proposed initial window size is up to 3 RTTs if
the receiver acknowledges every received packet. By integrating Smooth-start with larger initial

15

packets

acks

skip-1

drops

packet

time

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000

55.0000

60.0000

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

Figure 12: Simulation Result for TCP Reno with Slow-start.

packets

acks

skip-1

drops

packet

time

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000

55.0000

60.0000

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

packets

acks

skip-1

drops

packet

time

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000

55.0000

60.0000

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

(a) (b)

Figure 13: Simulation Results for TCP Reno (a) Smooth-start alone; (b) Smooth-start with ssthresh
Estimator;

window, the amount of time required for cwnd to reach ssthresh is computed as follows:

Smooth� start T ime = RTT log2 ssthresh + d� (k � 1)RTT � 3RTT

Therefore, in the case of probe strategy being Fine-4: Smooth-start takes only one more RTT
to reach ssthresh; but for the rest of probe strategy considered in this paper: Smooth-start takes
less RTTs to reach ssthresh if larger initial window is employed.

6 Conclusion

This paper proposes and evaluates a new variant of Slow-start called Smooth-start, to improve the
TCP start-up performance. Smooth-start smoothes the transition between Slow-start and Conges-
tion Avoidance. Two important parameters, grain number k and depth number d, are introduced by
Smooth-start, which determine the conservativeness of Smooth-start. Several possible probe strate-
gies of Smooth-start are evaluated through simulation. The inherent superiority of Smooth-start

16

over Slow-start is shown in the simulation results. With the Smooth-start algorithm, the chance of
having multiple packet losses from the same window of data is signi�cantly reduced and e�ective
throughput is greatly improved. Smooth-start can also be easily implemented and deployed since
it requires only the sender side to be modi�ed.

References

[1] J. Ahn, P. Danzig, Z. Liu, and L. Yan, \Evaluation of TCPVegas: Emulation and Experiment",
Proceedings of ACM SIGCOMM'95, Cambridge, MA, pp. 185-195, August 1995.

[2] M. Allman, S. Floyd, and C. Partridge, \Increasing TCP's Initial Window", INTERNET
DRAFT, draft-
oyd-incr-init-win-03.txt, April 1998.

[3] M. Allman, C. Hayes, and S. Ostermann, \An Evaluation of TCP with Larger Initial Win-
dows", ACM Computer Communication Review, Vol. 28 No. 3, pp 41-52, July, 1998.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, R. Katz, \TCP Behavior of a Busy
Internet Server: Analysis and Improvements", Proceedings of IEEE INFOCOM'98.

[5] B. Braden et al, \Recommendations on Queue Management and Congestion Avoidance in the
Internet", INTERNET DRAFT, draft-irtf-e2e-queue-mgt-00.txt, March 1997.

[6] L. Brakmo, S. O'Malley, and L. Peterson, \TCP Vegas: New Technique for Congestion De-
tection and Avoidance", Proceedings of ACM SIGCOMM'94, London, UK, pp. 24-35, August
1994.

[7] K. Fall and S. Floyd, \Simulation-based Comparisons of Tahoe, Reno, and SACK TCP", ACM
Computer Communication Review, Vol. 26, No. 3, pp. 5-21, July 1996.

[8] S. Floyd, and V. Jacobson, \On Tra�c Phase E�ects in Packet-Switched Gateways", Inter-
networking: Research and Experience, Vol. 3, No. 3, pp. 115-156, September 1992.

[9] S. Floyd and V. Jacobson, \Random Early Detection gateways for Congestion Avoidance",
IEEE/ACM Transactions on Networking, Vol. 1, No. 4, pp. 397-413, August 1993.

[10] J. Hoe, \Improving the Start-up Behavior of a Congestion Control Scheme for TCP", Proceed-
ing of ACM SIGCOMM'96, Stanford, CA, pp. 270-280, August 1996.

[11] V. Jacobson, \Congestion Avoidance and Control", Proceedings of ACM SIGCOMM'88, Stan-
ford, CA, pp. 314-329, August 1988.

[12] V. Jacobson, \Berkeley TCP evolution from 4.3-tahoe to 4.3-reno", Proceedings of the Eigh-

teenth Internet Engineering Task Force, pp. 365, 1990.

[13] S. Keshav, \A Control-Theoretic Approach to Flow Control", Proceedings of ACM SIG-

COMM'91, Zurich, Switzerland, pp. 3-15, September 1991.

[14] D. Lin and H. T. Kung, \TCP Fast Recovery Strategies: Analysis and Improvements", Pro-
ceedings of IEEE INFOCOM'98.

[15] D. Lin and R. Morris, \Dynamics of Random Early Detection" Proceedings of ACM SIG-
COMM'97, Cannes, France, pp. 127-137, September 1997.

17

[16] M. Mathis and J. Mahdavi, \Forward Acknowledgment (FACK): Re�ning TCP Congestion
Control", Proceedings of ACM SIGCOMM'96, Stanford, CA, pp. 281-291, August 1996.

[17] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, \TCP Selective Acknowledgment Option",
Internet Draft, work in progress, May 1996.

[18] S. McCanne and S. Floyd, ns-LBNL Network Simulator. Obtain via: http://www-
nrg.ee.lbl.gov/ns/.

[19] V. N. Padmanabhan and R. H. Katz, \TCP Fast Start: A Technique for Speeding Up Web
Transfers", Proceedings of IEEE GLOBECOM'98, Sydney, Australia, November 1998.

[20] V. Paxson, \End-to-End Internet Packet Dynamics", Proceedings of ACM SIGCOMM'97,
Cannes, France, pp. 139-152, September 1997.

[21] J. Postel, Transmission control protocol, Request for Comments 793, DDN Network Informa-
tion Center, SRI International, September 1981.

[22] S. Seshan, M. Stemm, and R. H. Katz, \SPAND: Shared Passive Network Performance Dis-
covery", Proceedings of USITS'97, Monterey, CA, December 1997.

[23] S. Shenker, L. Zhang, and D. D. Clark, \Some Observations on the Dynamics of a Conges-
tion Control Algorithm", ACM Computer Communication Review, Vol. 20, No. 4, pp. 30-39,
October 1990.

[24] W. R. Stevens, TCP/IP Illustrated, volume 1. Addison-Wesley Publishing Company, 1994.

[25] K. Thompson, G. J. Miller, and R. Wilder, "Wide-Area Internet Tra�c Patterns and Charac-
teristics", IEEE Network, Vol. 11, No. 6, pp. 10-23, November/December 1997.

[26] Yin Zhang, Lili Qiu, and S. Keshav, \Optimizing TCP Start-up Performance", Cornell CS
Technical Report, February 1999.

[27] L. Zhang, S. Shenker, and D. D. Clark, \Observations on the Dynamics of a Congestion
Control Algorithm: The E�ects of Two Way Tra�c", Proceedings of ACM SIGCOMM'91,
Zurich, Switzerland, pp. 133-148, September 1991.

18

